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Motion driven by surface-tension gradients 
in a tube lining 

By STEPHEN H. DAVIS, AN-KUO LIU 
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Department of Mechanics and Materials Science, The Johns Hopkins University 

(Received 12 December 1972 and in revised form 9 May 1973) 

A fluid layer that lines the inner surface of a circular tube has motion induced 
by axial surface-tension gradients. The lubrication equations for the system are 
analysed and it is found that even for thin layers the motions differ markedly 
from those in planar layers. The planar case serves as a class of outer solutions. 
These approximate solutions are modified by a boundary-layer correction where 
the mean surface tension is important. 

1. Introduction 
In  the human respiratory system, various of the airways are covered by fluid 

linings. In  the upper respiratory system the underlying tissue is ciliated; the 
beating of the cilia drives the overlying mucous which acts as a barrier to the 
invasion of foreign particles into the lungs (Carlson, Johnson & Cavert 1965). 
Such fluid motions have recently been analysed mathematically (Ross 1971). 
In  the lower respiratory system the smallest sacs of the lungs, called alveoli, 
are likewise covered with a liquid lining. The underlying tissue is thought 
(Scarpelli 1968) to emit a surface-active agent that acts to reduce drastically 
the surface tension of the liquid-air interface present. This reduction in surface 
tension is believed (Scarpelli 1968) to be responsible for the alveoli remaining 
inflated rather than collapsing under the influence of large capillary forces. The 
tubes leading to  terminal alveoli, called alveolar ducts, are, likewise, thought 
to be fluid lined but lack the surfactant emitting ability. 

One question that has been raised (Clements 1970) concerns the mechanism 
used by alveoli to dispose of surplus surface-active material (which is continually 
being produced). There seems to be no accepted explanation in the physiology 
literature of the process although it seems clear that surface-tension gradients 
must produce fluid motions whose sense is from the alveolus outward toward 
the alveolar duct. The present study might be applied to this situation. It should 
be pointed out that at this time there is no way to either prove or disprove that 
this mechanism is the dominant contributor to surfactant disposal. However, any 
surface-tension difference along an interface is sufficient to cause motion, so 
that the kind of motion envisioned should always be present. 

There have been previous investigations of motions driven by imposed surface- 
tension gradients. Yih ( 1968) analyses, using the Iubrication approximation, 
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r = O  z= L 

FIGURE 1. The geometry of the system. 

a two-dimensional layer on a plane and subject to gravity. Ader & Sowerby 
(1970) consider a three-dimensional version of Yih's problem. Yih (1969) further 
considers boundary layers formed by flows driven by surface-tension gradients 
near vertical walls. 

The present study considers the steady axisymmetric motion in a Newtonian 
fluid lining in a circular tube in the absence of gravity. The motion is driven by 
axial surface-tension gradients generated by axial gradients of the concentration 
of surface-active material. The full governing equations are analysed using 
lubrication theory, under which the equations look similar to those for creeping 
motion. The lubrication equations are first solved in the limit of vanishing 
thickness-to-radiusratio 6 (planar limit). This limit regains Yih's (1968) equations 
(properly interpreted) for the case of zero gravity. It is seen that the planar layer 
thins in the direction of the motion (i.e. in the direction of the surface-tension 
gradient). Solution curves are presented. The dynamics of the fluid lining of a 
tube, in general, significantly differ from those of a layer on a plane even for 
thin layers. The differences originate from the curvature K of the interface around 
the tube. If c is the absolute surface tension at  a point on the interface, the 
curvature K gives rise to a pressure field K@ (approximately) which has a non-zero 
axial gradient. This pressure gradient modifies the flow from that in a planar 
layer even for small 6 by creating a boundary layer at  one end of the tube and 
modifying the flow rates throughout. Thus, in a fluid lining of a tube, the motion 
depends not only on the axial surface-tension difference but also the absolute 
surface tension. The limit 6 + 0 is seen to be a singular one. Both an asymptotic 
analysis and numerical solutions are presented. 

2. Formulation 
Let us consider a Newtonian fluid of constant density po that forms a lining 

of a circular tube of radius R and length L as shown in figure 1. We shall seek to 
describe the motion induced in this lining when an insoluble surfactant of variable 
surface concentration I' is present. We shall use cylindrical co-ordinates to 
describe the motion. The z axis lies along the centre-line of the tube and the 
concentration I? = is imposed at  the end z = 0 while I' = 0, say, is imposed 
a t  the end z = L. We shall seek motions that are steady, axially symmetric 
and for which gravity can be neglected. The velocity components in the ( r ,  8, z )  
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directions are given by (u, 0, w) and the surface of the liquid lining is described 
by r = f ( x )  6 R. The motion is governed by the Navier-Stokes and continuity 
equations and appropriate boundary conditions. 

The Navier-Stokes and continuity equations reduce to the following : 

uu, + wuz = - (p/p& + v(u,, + r-lur - r 2 u ) ,  

ur + r-1u + w, = 0. 

( 2 . l a )  

( 2 . l b )  

(2.1 c )  

u = w = O  on r = R ,  (2.1 a) 

uwr + wwz = - (P/PO)Z + v(wrr + r-lwr), 

The boundary conditions on the solid wall are 

while on the interface r = f (z ) ,  the kinematic boundary condition reduces to 

u = Wf,. ( 2 . l e )  

In  addition, the interface is endowed with a surface tension v which is allowed 
to vary with surface concentration I' of surfactant as follows: 

g = g,-ar (a > 0) .  ( 2 . l f )  

The jump in normal stress across the interface is balanced by the surface tension 
times the curvature K while the jump in the shear stress is balanced by the 
surface gradient of surface tension and surface viscous forces. One model of 
these conditions can be written (Aris 1962, p. 242) as follows: 

T.n+Vs7s(T+K~ni-~1V,2u,+yzV,(V,.u,) = 0 on r = f ( x ) .  ( 2 . l g )  

Here T is the stress tensor of the bulk fluid, n is a unit inward normal vector, 
V, is the gradient along the interface and us is the surface velocity vector. p1 and 
,acC2 are the shear and dilatational surface viscosities respectively. In addition, 
since the surface-active material is confined to the surface, a balance equation for 
it takes the form 

v,. (ru,) = g,v:r, ( 2 . l h )  

where ?$ is the surface diffusivity coefficient. Sealy (1972) has considered the 
effects of solubility and concluded through order-of-magnitude estimates that 
these effects are small in the present problem. 

We shall seek a solution of system (2.1) using the lubrication approximation, 
which results in equations that are inertia-free. A suficient condition which 
gives these equations is obtained by a formal expansion in, say, A, some measure 
of the slope of the interface. The approximation results from the leading term of 
the following formal expansions : 

} ( 2 . 2 )  
g = ~ o ) + o ( A ) ,  r = r(o)+o(h), p = ~ ( o ) + o o ( A ) ,  
= ~ ~ ( 1 )  + o ( A ~ ) ,  = AW + o(A~),  j = f(o1 + o(A). 

The resulting differential system with superscripts dropped has the form : 

( 2 . 3 ~ ~ ~  b, c )  

47-2 

Pr = 0 

,~~(w~,+r-~w~)-p~ = 0 
ur + r-lu + wz = 0 

inf(z) < r < R, 
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d u  - p w r = - ,  
dz (2.3 d-h) 

a(wr)laz = qya2r/az2, 5 = r2-ar 
u = w = O  on r = R .  (2.3i)  

The precise derivation of these equations involves some elementary differential 
geometry and is given in detail in Sealy (1972). and 5 are defined only along 
the interface and d/dz of these quantities denotes the directional derivative in 
the direction of the local tangent vector, which, within the lubrication approxi- 
mation, is the ordinary derivative of these quantities treated as functions of 
arc length. When d/dz is applied to a function such as f which depends on z only, 
the directional derivative can be computed as follows: 

and so degenerates to  the usual ordinary derivative operator. 
Within this approximation, the normal stress boundary condition reduces to 

the classical one, given in ( 2 . 3 f ) .  The tangential stress boundary condition 
reduces to a balance between the shear stress in the bulk at the surface and the 
surface-tension gradient (2.3 d ) .  Wi th in  the lubrication approximation, con- 
tributions to this balance due to surface viscosities are small. 

3. Solutions 
Equations (2.3a, f )  show that the curvature in the 8-direction gives rise to 

P(Z) = - . . (Z)ifW (3 . la)  

The general solution of the z-momentum equation (2.3 b)  that satisfies conditions 

a pressure field which is uniform in r but which varies in the axial direction: 

(2.3i)  and (2.3d) is 
d r  r 

4 dz L] dx R 
R2-r2+2f2ln- -f-ln- (3 . lb)  

We can replace the continuity condition ( 2 . 3 c ) ,  using u = 0 on r = R, by the 
equivalent integral condition 

rR 

which, if (3.1 b )  is used, reduces to 

l -  4dz $(R2-f2) ( R 2 - 3 f 2 ) - f 4 1 n f ) + f ~ ( $ ( R 2 - f 2 ) + + f 2 1 n ~ ] .  R ( 3 . 1 ~ )  

The surface diffusion equation (2.3g) can be integrated to yield 

rw-gsarpz = q,, 

where qr is the surface flux of the surfactant. We can eliminate F through (2.3h) 
and obtain 

(C - u2) w - g S d u / d ~  = ql, 
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where q1 = -aqr and we note that q1 and qr have opposite signs. If we replace 
w by its value given in (3.1 b ) ,  we obtain 

The pair of equations (3.1 c, d )  is a linked set of ordinary differential equations for 
the functions (T and f when the pressure gradient dp/dz is replaced by its value 
obtained from ( 3 . 1 ~ ~ ) .  These have the form 

+ 4f2 (l(R2- f 2 )  (R2 - 3f 2, - f 41n 

The velocity w takes the form 

pw = - R2-r2+2f21n- ‘)@ - (3 .2~)  
R dz’ 

4. Scaling 
Before turning to the solution, let us scale the equations governing the solu- 

tions in such a way that it will be convenient later to look at  the limiting case 
where the lining is thin compared with the tube radius. 

Let us define h,, 
h, = R-f(O), ( 4 . 1 ~ ~ )  

as the lining thickness at  z = 0. We shall presume, and verify numerically later, 
that R - f (2) is of order h, for all z. The lining thickness K(z’) can then be defined 
in terms of z’ = z/L: 

h’ (4  = (R--f(z))/(R-f(O)), (4 . lb)  

so that K ( 0 )  = 1. The thickness ratio 6 is defined by 

6 = h,/R 

6 <  1. 
and the lining is termed thin if 

(4.1 c) 

We can now define a non-dimensional radial co-ordinate x’ measured in units 
of h, as follows: 

r = R{ 1 - Sh’(z’) x’}, (4.ld) 

so that 
0 if r = R, 

1 if r =f(z). 
x’ =( (4.le) 
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The general problem posed in $ 3  has two surface-tension contributions. The 
surface-tension difference from one end of the tube to the other drives the motion 
but in addition, the curvature in the &direction contributes an axial pressure 
gradient depending on the absolute surface tension that modifies the flow. As 
a result, separate scales are needed for absolute surface tension and surface- 
tension differences. If a1 and az are the values of the surface tensions a t  x’ = 0 
and z’ = 1 respectively, a non-dimensional surface-tension difference a’ can be 
defined as follows : 

a = CTz + (a, - a,) CT‘. 
The first term (one might use +(al+a2) here instead of a2) is a measure of the 
absolute surface tension while the following term is a measure of the surface- 
tension difference. It follows that on the interface 

and 

a(2) = ( a 2 -  a]) (8 + a’(s‘)}, (4.lf 1 

8 = ~z/(a,-a,) 

a’(0) = - 1, d(1)  = 0. 

(4.1g) 

(4.1 h, i) 

If definitions (4.1) ase substituted into (3 .2a )  and (3 .2b ) ,  a pair of differential 
equations defining a’ and h’ is obtained. If (3.2a) is divided by S2 and (3 .2b)  is 
divided by S, the following system results: 

(4.2) 
a’(0) = -1, a’(1) = 0, h’(0) = 1, I 

where 

Q = L ~ Q i / ( ~ 2 - ~ i ) h ‘ ? R ,  q = L ~ q i / ( a 2 - ~ i ) ~ h i ,  7 = ~ ~ ~ / ( ~ z - ~ i ) h i ,  

A,, = *S-,( 1 - 6h’)-1 {$[i - (1 - + ( 1  - 6h’)41n (1 - ah’)}, 

A12 = $S-’(X+d) (1-Sh’)-2{$[1-(1-Sh’)2] [1-3(1-6h’)’] 

- (1  - 6h‘)41n (i -ah’)}, 

A,, = -~+~&la‘( l -&h’)- l{l  - (1 -Sh’)2-2(1 -Sh‘)2In(l-6h‘)}, 

A,, = $.-’(IS + a’) (1  - (1 - (1 - Sh’), + 2( 1 - Sh’)21n (1 - Sh‘)}. 

5. Estimates of the values of the parameters in an alveolar situation 

say 75 dyne/cm to, perhaps, a value of 25 dyne/cm or even lower. Take, then, 
I n  an alveolus, the surfactant material lowers the local surface tension from 

a1 = 25dynes/cm, az = 75dynes/cm, 

so that S = 1.5. 

An alveolus has a diameter of perhaps 200pm so let us take the radius of the 
alveolar duct as 1OOpm and the fluid layer of depth 10pm. This last number is 
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totally unverified and hence should be regarded as only a rough order of magni- 
tude. Hence, 

6 = 0.10. (5.1 a)  

The surface diffusion constant gS is only roughly known. Say, 

gS = 10-4cm2/s 

as estimated for similar materials by Sakata & Berg (1969). If p is taken to be 

( 5 . l b )  
the viscosity of water, then 

As will be seen, the solutions depend only weakly on 7 for 7 values this small. 

7 = 2 x  10-5. 

6.  Thin layers 

from the surface flux of surfactant, then it should be expected that q < 0. 
If it is remembered that q is the ‘surface-tension flux’ and is of opposite sign 

Let us introduce the ratio R, : 
R, = -q/Q- (6 . la )  

If the Aij of system (4.2) are expanded in powers of 6, the leading terms can 
be written using (6.1 a)  as follows : 

where 

a‘(0) = - 1, a‘(1) = 0, h’(0) = 1, I 
B,, ff +h’z - @‘38 + ih‘462, 

B,, ff &(S + a‘) h’362, 

B,, ff +(S + a’) rT’h’2S2 

B,, - - 7 + d(h’ + ih”6 + &h’362), 

(6.1b) 

and we have omitted terms O(S3) as S -+ 0. These are the approximate equations 
that govern the motions in thin layers. 

Before proceeding with the solution of system (6 . l ) ,  let us examine some 
properties of the system. 

The matrix B (as is the matrix A of system (4.2)) is explicitly independent of 2’. 

Hence, the phase plane equation obtained by inverting B (if this is possible) can 
be used. This has the form 

dh‘lda‘ = - (&, + 3, BJ(& + R, BIZ). (6.2a) 

The correrrponding boundary conditions are as follows : 

(6.2b) 

( 6 . 2 ~ )  
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7. Planar limit 

gives the system 
If it is assumed that dh'ldz' = O(1) as 6 -+ 0, the formal limit 6 -+ 0 of (6.1) 

4h '2dd /dz '  = Q ,  ( 7 . 1 ~ )  

(dh '  - 7) do'/&' = -QRQ, (7 .1b )  

which agrees with those equations derived by Yih (1968) for two-dimensional 
planar motions driven by surface-tension gradients in the limit of zero gravity. 
Yih discusses the possibility of (7.1 b )  being singular a t  the point where cr'h' - 7 = 0 
since he mistakenly treats o' as the absolute surface tension and not the surface- 
tension difference. As we have seen, with the scaling given in Q 4, d < 0, so that 
no singularity of this kind can occur. This was first recognized by Adler & 
Sowerby (1 970). 

The limit 6 3 0 with &, RQ, 7 and S fixed is a singular limit of system (6.1) 
in the sense that the matrix B becomes singular (non-invertible) there. dh'ldz' 
does not appear in the governing system (7.1) and the absolute surface tension 
no longer has an effect. (The equations are independent of 8.) 

If we take the ratio of (7.1 a)  and (7.1 b) ,  we obtain a compatibility (algebraic) 

( 7 . 1 ~ )  
equation for c' and h': 

The ratio RQ is determined from the condition that h' = 1 when CT' = - 1: 

2 ( d h '  -7)/h" = -RQ. 

R, = 2(1+7) .  ( 7 . l d )  

Hence, the final value h'( 1) of the height can be obtained directly from (7.1 c ) ,  

( 7 . 2 ~ )  
(7 .1d)  and o'(1) = 0: 

The final thickness is much smaller than the initial thickness when, as is usual, 
n <  1. 

h ' (1)  = [r/(l+7)1+. 

The solution for the algebraic equation (7.1 c )  is as follows: 

(7.2b) 

The limit 7 -+ 0 decreases the order of the surface diffusion equation from two 
to one, so that a diffusion boundary layer can be expected. For 7 < 1, there is 
such a layer a t  z' = 1, where d = 0. It has o'-thickness O(78) and its presence 
changes h'(1) from zero to [7/(7+ 1)]4 as given by ( 7 . 2 ~ ) .  Figure 2 illustrates the 
variation of h' with d for various values of 7. 

The z' dependences of h' and CT' can be obtained by substituting (7.2b) into 
(7.2 a)  and enforcing c'( 0) = - 1. The result is as follows : 

37Rg((d I - 1 )  4- ( - 1) 1- ( ld12 + 2'4'RQ)2 - ( 1  f 27RQ)% = - 3&xi 2'. ( 7 . 2 ~ )  

The value of Q (and hence through R,, the value of q)  is obtained by imposing 
the condition cr' (1) = 0. 

It is easy to show that for small 7 

- 4 = g{i + 57 + 272+ 0(73)), 

Q = ;{I + 47 - 272+ o(73)). 
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- 1.0 u-’ 0 

FIGURE 2. The curves h‘ vs. u’ in the planar limit for 7 = 0 and 7 = 0.01. 
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FIGURE 3. The curves (a)  h‘ 278. Z’ and (6) cr’vs. 2’ in the planar limit for 7 = 0 and = 0.01. 

Figures 3 (a)  and (b )  give the z‘ variations of h’ and (T’ respectively. Near z’ = 1, 
h‘ exhibits a surface diffusion boundary layer of thickness O(7-2) which results in 
the finite downstream thickness given in ( 7 . 2 ~ ) .  The curve of (T’ vs. z’ exhibits 
no such structure. These figures show numerical solutions for r = 0 and 7 = 0.01, 
the latter of which isIan exceedingly large value of 7, much larger than could be 
realized physiologically. ;We use it here since the dependence of h’ and 0-’ 
is so weak that realistic values would not give discernible differences in the 
figures. The Runge-Kutta-Gill procedure was applied t o  the equation with 
- 1 < (T’ < 0 as independent variable and z‘ as dependent variable. This guaran- 
teed that the gradients were small enough for accurate solution. These results 
agreed well with the analytical solution and thus served as a test on the pro- 
cedure that is used for the non-planar equations. 



746 S.  H .  Davis, A.-K. Liu and B. R. Sealy 

The result that the layer thins in the direction of motion is easily understood. 
When 6 = 0, lubrication theory gives that the flow is locabby plane and parallel; 
in fact, it  is the plane Couette flow driven by the surface shear stress imposed 
by the surface-tension gradient : 

W(X‘, z’) = (dcr’/dz’) x‘. 

w5’ = q. 

On the free surface when 7 is neglected, we have that 

v’ and the constant q are negative. Since (T’ decreases in magnitude as z’ in- 
creases, w increases. The surface fluid speeds up as z’ increases. Since the bulk 
flow is plane Couette flow, the average axial velocity increases with z‘. By con- 
tinuity, the thickness must then decrease with z’. 

8. Non-planar flows 

singular, so that the inverted system can be treated. 
For small but non-zero 6, the matrix B in system (6.1) is generally non- 

(8.1) 

where A = B,,B,z - B,,B,,. 

The right-hand side of system (8.1) is explicitly independent of z’, so that we 
can consider h’ as a function of CT’ only, by dividing one of equations (8.1) by 
the other. This is the system (6.2). The leading term as 6-+ 0 can be written 
explicitly as follows : 

The initial slope (at z’ = 0, h’ = 1, cr’ = - I) of h’ as a function of (T’ is easily 
written down as a function of RQ and is shown in figure 4. The slope is infinite 
at  R, = R,  = # as a +  0 and is zero at  RQ = R, = 2 ( 1 + r )  as a +  0. The value 
RQ = 2(1 +r)  is seen to be the characteristic value of RQ in the planar limit as 
given in (7.1 d).  

The singular nature of the problem as 6 --f 0 is apparent from (8.2). Approxi- 
mate solutions valid asymptotically as 6 --f 0 can be constructed as follows. 

Consider an outer region where dh‘ldd = O(1) as 6+ 0. Then, in order to 
have S -+ 0, we must take 

-r+h’(d+gRQh’) 0. 

As a result h’ = RG1{/V’l $- (d2+ 27RQ)&). (8.3) 

This is precisely the planar-limit relation (7.2b). However, the relation (8.3) 
is not a valid approximation to the solution of (8.2) for all d. This is easily seen 
by comparing the initial slopes [dh’/da’](_,,,). Figure 4 shows initial slopes of the 
solutions of (8.2) as O ( c F )  as a +  0 while those computed from (8.3) are O(1). 
There is a boundary layer near CT‘ = - 1 (i.e. z’ = 0) in which dh‘/dd is large. 
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I 

FIGURE 4. The initial value of the slope dh’ldu’ v8. Re for the thin-layer equations keeping 
the dominant terms in 8. At Re = R, = Q, the initial slope is unbounded; at  

the initial slope is zero. 
Rq = R, = 2(1+7) ,  

Hence, we cannot impose the ‘inner’ boundary condition h‘ = 1 at (T‘ = - 1 to 
obtain the value of RQ. 

I n  order to examine the inner region near u‘ = - 1, the stretched co-ordinate X’ 
is introduced: 

An inner approximation to the solutions of ( 8 . 2 )  is governed to leading order by 
the following equation : 

X’ = (1  + a’)/(X - 1) 6 2 .  ( 8 . 4 )  

dh’ 1 -7  + h’( - 1 + 4RQh’) 
dX’ - h’2 - 8 + iRQ h’ 

The solutions are easily obtained for all 7 but when 7 =I= 0 they are cumbersome 
and differ only slightly from the 7 = 0 solution. (The 7 boundary layer is near 
(T’ = 0.) When 7 = 0, the solution has the form 

h’ - 2/RQ 21Re 
exp [(h’2 - I)  +R,l(h’ - I)] = exp [ - @’I (5.5) I 1 - 2 / R Q  1 

and satisfies h‘ = 1 a t  C’ = 0. 
The matching condition is given by 

h ’ - t 2 / R g  as c‘+oO. 

The inner solution (8 .5 )  automatically matches the outer solution (8.3) as (T’ + - 1. 
A composite solution is easily constructed by adding the inner and outer 
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1 *o 

- 1.0 cr' 

FIGURE 5 .  The curves of h' vs. cr' for the thin-layer equations, 9 = 0,  S = 1.5. -, 
R, = 2 . 5 ;  - - - , R, = 1.75. -*..., RQ = 2.0. The boundary-layer correction near cr' = - 1 
has been left off the asymptotic result S -+ 0 for clarity. 

solutions and subtracting the common part 2/RQ. The automatic matching holds 
not for a single value of RQ but  for the whole range of RQ, RQ > 8. 

The system (6.2) is independent of Q; it depends only on the ratio RQ. This 
system has been numerically integrated for 7 = 0 (small non-zero 7 introduces 
a thin-boundary-layer correction near a' = 0) and S = 1.5. The results are shown 
in figure 5. The topmost (solid) curve is for RQ = 2-5 and 6 = 0.10, the middle 
solid curve is for 6 = 0.05 while the bottommost solid curve is the asymptotic 
approximation valid for RQ = 2-5 and 6- t  0 in the outer region. This is, of 
course, corrected near d = - 1 by a thin boundary layer which is left off the 
graph for purposes of clarity. The agreement between the analytical asymptote 
and the numerical solution is excellent. A similar set of curves for the case 
RQ = 1-75 and 6 = 0-10 is shown dashed in figure 5. It can be seen that a whole 
family of planar solutions (8.3) (parameterized by RQ) are good approximations 
to non-planar ones away from a' = - I and each of these is corrected near d = - 1 
by a boundary layer of thickness O ( ( 8 -  I )  a2). The family of solutions varies 
continuously with RQ from large RQ, down to RQ = 2 (where a boundary layer 
is unnecessary), down towards RQ = R, = 4. At R,, the initial slope of h' is 00 
and a boundary layer cannot be accommodated. For RQ < R,, the initial slope 
is negative while a boundary layer extending upward would be required. No 
solution for RQ < 4 could be obtained either analytically or numerically. 

Physically, the outer region is one where only surface-tension differences are 
important. (The solutions are well approximated by a family of planar solutions.) 
The mean surface tension is important only in (inner) regions where non-planar 
effects enter, the boundary layer near a' = - I. The boundary-layer thickness 
at this upstream end is O((S- 1) a2) and 8 - 1 is a non-dimensional form of the 
local mean surface tension. 

We now turn to the system (8.1) for the z' dependences of a' and h'. The value 
of Q will be determined in terms of RQ. 
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L I 

0 1 .o 
2‘ 

FIGURE 6. The curves of h’ 0s. z’ for the thin-layer equations, 7 = 0, S = 1.5, 6 = 0.10. 
-, R - 2.5; - - -, R, = 1.75. The boundary layer near z’ = 0 has been left off the 
asymptotic result S 3 0 for clarity. 

0 . -  

The outer solution valid away from z’ = 0 is given by the planar equations 
and for 7 = 0 is 

h’(2’) = ( 1 2 & / R ~ ) *  ( I  - d)*, 

where h‘ satisfies the appropriate condition h‘( 1) = 0 in the outer region. Again, 
if 7 is small but non-zero, the solution (8.6) is modified by an O($) boundary 
layer near x’ = 1. We have chosen to discuss the 7 = 0 case merely for clarity. 
The outer solution (8.6) should match an inner solution valid near z’ = 0; the 
matching value is 

h’(O) = (12&/RQ)*. (8 .7)  

6’ = Z‘/(S- 1) 62. 

In the inner region, the appropriate stretched co-ordinate is 5‘) 

(8.8) 

This is valid near c‘ = - 1, so that the appropriate boundary-layer equation is 

h’ - 2 /RQ dh’ 
7 = - 6 Q R Q  d 5  h’3 * 

The solution of (8.9) that satisfies h‘ = 1 at [’ = 0 is 

h‘ - ~ / R Q  ‘IR& 
exp [&(hf3- 1) + Rg1(h‘2 - 1) + 4 R ~ ~ ( h ’  - l)] = exp [ - 6QRQ (3. 

(8.10) 
I 1 - 2 / R Q  I 

In  the matching region, 
h‘+  2/RQ its < ‘ - t C O .  (8.11) 

The matching principle states that the values given in (8.7) and (8.11) should 
agree. Hence, Q is determined: 

Q = 2/3R$. (8.12) 

With the scalings (8 .4)  and (8.8) it is easy t o  verify that the graph of cr‘ vs. x’ does 
not display a boundary-layer character; the variations near z’ = 0 are gentle. 

Equations (6 .1)  were numerically integrated for 7 = 0, S = 0.10 and 8 = 1.5 
for two cases: R ,  = 2.5 and RQ = 1.76. Figure 6 shows h‘ vs. x’ compared with 
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FIGURE 7 .  The curves of u‘ vus. z’ for the thin-layer equations, 71 = 0, S = 1.5, 8 = 0.10, 
for both R, = 2.5 and R, = 1.75. 

the outer (planar) approximation and again the boundary-layer correction has 
been omitted for clarity. Figure 7 shows the corresponding CT’ us. z’ curves with its 
lack of boundary-layer structure. The two curves appear here as a single curve 
since the values are so close. 

The full system of equations (4.2) with no small-6 approximation was in- 
tegrated numerically for several cases in order to test the reliability of the 
thin-layer approximation. Since system (6.1) was obtained from system (4.2) 
by neglecting terms O(d3), as expected, the numerical solutions for the two 
systems differed in the third decimal place for the case tested, i.e. 6 = 0.10. 

9. Conclusions 
Motions in fluid layers lining circular cylindrical tubes have been examined. 

These flows are assumed axisymmetric and steady and are driven by axial 
surface-tension gradients produced by the presence of a distribution of insoluble 
surfactant. The lubrication approximation (inertia-free, locally parallel flow) has 
been envoked and for thin layers, the further approximation 6 < 1 has been used. 

The formal limit S-t 0 reproduces the planar case treated by Yih (1968). 
This solution as expected displays no dependence on the local mean surface 
tension but depends only on the local surface-tension gradient. The velocity 
field is locally plane Couette flow and the layer thins in the direction of motion. 

When 6 -g 1 but 6 + 0, the flow is markedly different from the planar case. 
The limit 6 -t 0 is a singular one. For small 6, the solutions display a boundary- 
layer character near the low-surface-tension end of the tube. Outside the boundary 
layer, the solutions are well approximated by 6 = 0 solutions. However, since 
the outer solution is not required to satisfy the inner boundary condition, the 
parameter R, is undetermined. There is in fact a one-parameter family of outer 
(8 = 0) solutions seemingly allowable. They are in a one-to-one correspondence 
with (i) the interfacial slope at  the upstream end, (ii) the downstream thickness 
or (iii) the fluid-layer volume. For each R, > g, it is possible to construct a 
boundary-layer correction near z’ = 0 that matches it. The matching condition 
determines Q in terms of R,. The value R, = 2(1+ 7) is characteristic of the 
6 = 0 problem. This outer solution automatically satisfies the inner boundary 
condition and so no boundary layer is necessary. The boundary layers for 
R, 2 2( 1 + 7) are shown in figures 5 and 6. The boundary-layer structure re- 
flects the importance of the local mean surface tension (in addition to the local 
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gradient) and the thickness of the layer is proportional to this local mean. The 
mean surface tension enters the problem through the normal force balance 
across the interface, which within the lubrication approximation is the (dimen- 

This is important in the upstream boundary layer because it produces a non- 
negligible axial pressure gradient dp/dz  - (c/f 2, dfldz, which for RQ > 2 opposes 
the flow driven by the surface-tension gradient. Hence, in this layer the average 
downstream velocity is decreased and the layer becomes thicker. When 

1-5 < RQ < 2.0 

the reverse occurs while for RQ < 1.5, no solution could be obtained. 
The effect of non-zero surface diffusion is to impose a boundary-layer structure 

on the downstream end which guarantees a non-zero layer thickness everywhere. 
A restriction on the applicability of the analysis arises through the use of 

the small slope (lubrication) approximation. Figure 6 shows that at  the tube 
ends the slope can, indeed, be large. At the upstream end, z' = 0, the slope is 
small when R, z 2( 1 + q) since only a gentle boundary layer appears. As RQ 
departs further from this value, the quantitative results become less reliable 
but the qualitative form should still be representative of the solution of the 
full Navier-Stokes equations within a finite range of R,. At the downstream 
end, z' = 1, a vertical slope is found for 7 = 0. A sufficiently large amount of 
surface diffusion would make the slope here gentle as well. 

In  relation to the fluid flows in alveolar ducts, perhaps the most useful bit of 
information that could be obtained would be the flow rates. These would be 
known if R, were known. Interestingly, one can identify RQ in our model simply 
from a still photograph of the interfacial shape since the RQ are in a one-to-one 
correspondence with these. That is, for each interfacial shape, there is a unique 
value of RQ. 

sional) Laplace relation p = --q. 
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